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Background

= |Learned Index Structure

" |ndex structure employs machine learning techniques
" View the index as a model that predicts the position of a key

" Performance of Learned Index: Space-efficient

" Pareto optimal in terms of index size and lookup latency in read-only
" No alternative exists that has both a smaller size and lower latency
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(Benchmarking Learned Indexes, VLDB 20)
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 Up to about 2,000x slower
than traditional indexes
* But still there are application
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where index build time is
crucial (e.g., LSM-tree)

* Why Building the Learned Index is Slow?
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Index build time = 1) Number of elements X 2) Per — element overhead

1) Complete traversal and training

2) Higher per-element training overhead
* Light-weight training model: RadixSpline (aiDM 20), Bourbon (OSDI 20)
» But it’s still longer than traditional indexes

" This study began with the question ... @

Since the learned index uses the model,
Can’t it learn efficiently even with less data?

= Qur Approach: Sampling

= Challenges
1. Losing the error-bound property due to sampling loss
2. Complex trade-offs in terms of model, index, and micro-
architecture
3. Absence of benchmark for sampling applied indexes

1. Error-bound Preserving Sample Learning Algorithm

e EB-PLA (Error-bounded Piece-wise Linear (a)

Approximation) Model
(a) Train all keys with error-bound &
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(c) Refine the error-bound due to sampling loss
- Vk,Error(k) <e'(=e+1—-1)

» Preserve the error-bound property
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(d) Replace the sample learning error-bound to
S(=e—1+1)-> Vk,Error(k) <c¢

> Preserve the error-bound () by learning less data wey

with smaller & stricter error-bound (9)
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2. Internal Changes due to Sampling
1) Dynamic Segmentation (Key range of each segment is different)
e Aggressive sampling can increase the number of segments

2) Fixed Segmentation (Key range of each segment is equal)
e Aggressive sampling can increase the number of under-fitting segments
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3. Unified Sampling Algorithm& Implementation
c& BASIL (Benchmark of Sampling Applied Learned Indexes)
1) Unified Sampling Algorithm: Systematic Sampling
e Extract every I*" key form first to last key (I=sampling interval)
2) Unified Sampling Implementation frn (o i) © 5

] Key (k)
* |ndex access and train only sample I . . “a

key-value data from entire dataset 4

e Interval (I=3)
Evaluation

1. Sampling Trade-offs
 Samplinginterval (I)T
— (a) build time 1

BASIL. Access I-th sample key-value in original dataset

Index: sSPGM (Sample EB-PLA), Dataset: History
Error bound (¢ € [22,21°]), Sampling interval (I € [2°, & (< 219)])
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(a) Build time (ms)
(b) Index size (MB)
c) Lookup latency (ns)
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* Each error-bound (¢) has
threshold interval (IT")

«  Until I (b-i) rest of . ;
metrics remain consistent
o After ITH,
# of segments 1
— (b) Size T, (d) Height T
— (e) Pred. cache miss T,
(f) Pred. latency T

o After [TH
# of segments T — (g) MSE ! — (h) Corr. cache miss 4, (i) Corr. latency |
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2. Design Space of Learned Indexes
* Without sampling,
absence of trade-offs between
build, size, and lookup
 Sampling introduce trade-offs
between build, size, and lookup
 Broaden design space of learned
indexes from 2D to 3D

3. Build Speed-up

 Explore Safe down-sampling,
where size & lookup latency e
increased by IeSS than 5% —- Without sampling —@— Max down-sampling ~—#~ Safe Down-Sampling | |

 Max build speedup without performance loss
» sRMI: 1/44,514, sPGM: 1/40,781, sRS: 1/14,479
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4. Pareto Analysis

 Can learned indexes be built more efficiently in terms of build time and lookup
latency than traditional indexes through sampling?

 To the best of our knowledge, this is first to show that learned indexes are also
Pareto optimal in terms of build time and (average and tail) lookup latency
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