Can Learned Indexes be Built Efficiently?
\ A Deep Dive into Sampling Trade-offs

|

Minguk Choi, Seehwan Yoo, and Jongmoo Choi
Dankook University, South Korea
{mgchoi, seehwan.yoo, choijm}@dankook.ac.kr

Background

= |Learned Index Structure

" |ndex structure employs machine learning techniques
" View the index as a model that predicts the position of a key

" Performance of Learned Index: Space-efficient

" Pareto optimal in terms of index size and lookup latency in read-only
" No alternative exists that has both a smaller size and lower latency

face Learned

_ e RMI
| , _ PGM
| \ RS

\\\\‘\hlﬁb RBS

amzn

(a) B-Tree Index (b) Learned Index
Key Key

¥ v

Model
BTree

(e.g., NN)

pos pos\q

‘ ‘ & | 101 102 101 102

-0 + i - mi + ' :
pos pos + pagezise PoOS - min_err pos + max €r Size (M B) Size (M B)

(Benchmarking Learned Indexes, VLDB 20)

(0]
o
o

(@)
o
o

§aN
o
o

ART
BTree
IBTree
FAST

Traditional

Lookup time (ns)

N
o
o

(The Case for Learned Index Structures, SIGMOD '18)

Learned

® RMI
PGM
® RS

" Long Index Build Time

o
o
o

o))
o
o

% CHT
x RT
ART
A BTree
A |IBTree

 Up to about 2,000x slower
than traditional indexes
* But still there are application

NN
o
o

@ For 650ns, up to 1,950x
@ For520ns, up to 187x
(3 For 390ns, up to 8.3x

N
o
o

Lookup time (ns)

where index build time is
crucial (e.g., LSM-tree)

* Why Building the Learned Index is Slow?

10-1 10° 10! 102 103 10% o™

Build time (ms)

Index build time = 1) Number of elements X 2) Per — element overhead

1) Complete traversal and training

2) Higher per-element training overhead
* Light-weight training model: RadixSpline (aiDM 20), Bourbon (OSDI 20)
» But it’s still longer than traditional indexes

" This study began with the question ... @

Since the learned index uses the model,
Can’t it learn efficiently even with less data?

= Qur Approach: Sampling

= Challenges
1. Losing the error-bound property due to sampling loss
2. Complex trade-offs in terms of model, index, and micro-
architecture
3. Absence of benchmark for sampling applied indexes

1. Error-bound Preserving Sample Learning Algorithm

e EB-PLA (Error-bounded Piece-wise Linear (a)

Approximation) Model
(a) Train all keys with error-bound &

Position

=

[
Error Bound
¢
»

- Vk,Error(k) < &

(b) Train sample It keys with the error-bound &

+» Vk,Error(k) < ¢

Position

>

 Sample EB-PLA Algorithm

(c) Refine the error-bound due to sampling loss
- Vk,Error(k) <e'(=e+1—-1)

» Preserve the error-bound property

Position

(d) Replace the sample learning error-bound to
S(=e—1+1)-> Vk,Error(k) <c¢

> Preserve the error-bound () by learning less data wey

with smaller & stricter error-bound (9)

Position

 Sample EB-Histogram

el

* PLR with Simple Linear Regression

1 (d) yﬁg/’

9 +1 Segment

Key

>

Santiago
Chile

SIGMOD
PODS
2024

2. Internal Changes due to Sampling
1) Dynamic Segmentation (Key range of each segment is different)
e Aggressive sampling can increase the number of segments

2) Fixed Segmentation (Key range of each segment is equal)
e Aggressive sampling can increase the number of under-fitting segments

+ 4 Empty Bins

b ol e
V : : '. ® Trained ! loll]
} : : O Not Trained : 0.0 ,:’gfl 001
' b
! | I | [I
I 1 ! !
| BN | :

+ Constant Segment

@ trained
O not trained

e e

110,
] I
I
f' Bound |_.._| I | o!
P— R P— R P—Il I : R P_/l I

Position
Position
Position
Position

Error | | 3

+1 Histogram

3 : To RN
o
o
| |
Key Key _ Key _ Key
(a) Simple Linear Regression (I = 1) (b) Simple Linear Regression (I = 3) (a) EB-Histogram (I =1,& = 5) (b) Sample EB-Histogram (I =1,6 =3, =5)

3. Unified Sampling Algorithm& Implementation
c& BASIL (Benchmark of Sampling Applied Learned Indexes)
1) Unified Sampling Algorithm: Systematic Sampling
e Extract every I*" key form first to last key (I=sampling interval)
2) Unified Sampling Implementation frn (o i) © 5

] Key (k)
* |ndex access and train only sample I . . “a

key-value data from entire dataset 4

e Interval (I=3)
Evaluation

1. Sampling Trade-offs
 Samplinginterval (I)T
— (a) build time 1

BASIL. Access I-th sample key-value in original dataset

Index: sSPGM (Sample EB-PLA), Dataset: History
Error bound (¢ € [22,21°]), Sampling interval (I € [2°, & (< 219)])

103

101 i

(0]
o
o

10—1 i

(o)}
o
o

E

(a) Build time (ms)
(b) Index size (MB)
c) Lookup latency (ns)

[
o
G
&
o
o

~ :i_ 2I4 ZIS 2![2 2!!.6
Sampling interval

i 2I4 2I8 2!!.2 2!!.6
Sampling interval

:i_ 2I4 ZIS 2!!.2 2![6
Sampling interval

* Each error-bound (¢) has
threshold interval (IT")

« Until I (b-i) rest of . ;
metrics remain consistent
o After ITH,
of segments 1
— (b) Size T, (d) Height T
— (e) Pred. cache miss T,
(f) Pred. latency T

o After [TH
of segments T — (g) MSE ! — (h) Corr. cache miss 4, (i) Corr. latency |

le7

=
o
]

Fb

(f) Pred. latency (ns)

o
Ul

(e) Pred. cache misses

:i_ 2I4 ZIS 2?[2 2I16
Sampling interval

i 2I4 2I8 2I12 25.6
Sampling interval

:i_ 2I4 2IS 25.2 2I16
Sampling interval

=

(h) Corr. cache misses
= N
.}UJJ
(i) Corr. latency (ns)

e8

w

-o—. 2
:i_ 2I4 ZIS 2![2 2I16
Sampling interval

o

:i_ 2I4 2I8 2I12 2I16
Sampling interval

:i_ 2I4 2IS 2;L2 2I16
Sampling interval

—_—— £=22 24 —_—— 26 —_—— 28 —_—— 210 —_—— 212 —_—— 214 216

2. Design Space of Learned Indexes
* Without sampling,
absence of trade-offs between
build, size, and lookup
 Sampling introduce trade-offs
between build, size, and lookup
 Broaden design space of learned
indexes from 2D to 3D

3. Build Speed-up

 Explore Safe down-sampling,
where size & lookup latency e
increased by IeSS than 5% —- Without sampling —@— Max down-sampling ~—#~ Safe Down-Sampling | |

 Max build speedup without performance loss
» sRMI: 1/44,514, sPGM: 1/40,781, sRS: 1/14,479

(a) sRMI (b) sPGM

(su) Aoua3e| dnX007
© [

(su) Aouaie| dnx007
)] o] 5

(su) Aoua3e| dnX007
» =
(su) Aouaie| dnx007

/hy 1071
. 0/

o8
A\ Q
10° Mg) 103

103 o

200 400 600
Lookup Latency (ns)

4. Pareto Analysis

 Can learned indexes be built more efficiently in terms of build time and lookup
latency than traditional indexes through sampling?

 To the best of our knowledge, this is first to show that learned indexes are also
Pareto optimal in terms of build time and (average and tail) lookup latency

00 history (Average) - osm (Average) 0 - history (99.9%th) - 0osm (99.9%th)

Avg. lookup latency (ns)
99.9%th lookup latency (ns)

10° 10! 102 103 104
Build time (ms)
Traditional
—8— SRS —%— SCHT

10° 10 102 103 104
Build time (ms)

10° 10! 102 103 10%
Build time (ms)

109 10! 102 103 10¢
Build time (ms)
Learned
—0— sRMI

sPGM —%— SRT —<— SART —<— sBTree —<— sIBTree BinarySearch

	슬라이드 1

