Can Learned Indexes be Built Efficiently?
A Deep Dive into Sampling Trade-offs

Minguk Choi, Seehwan Yoo, Jongmoo Choi
Dankook University, South Korea
1. Introduction

- Learned Index
 - Index structure employs machine learning techniques
 - View the index as a model that predicts the position of a key in a sorted array

![Diagram of B-Tree Index and Learned Index](image-url)
1. Introduction

- **Learned Index**
 - **Space-efficient** by effectively compressing data distribution through the model
 - Pareto optimal in terms of index size and lookup latency in read-only workloads
 - No alternative that has both a smaller size and lower latency

(Benchmarking Learned Indexes, VLDB ‘20)
1. Introduction

- Limitation of Learned Index: **Long Index Build Time**
 - Significantly (up to about 2,000x) slower than traditional indexes
 - Not Pareto optimal (build-efficient) in terms of build time and lookup latency
 - Still, there are application (e.g., **LSM-Tree**) where the index build time is crucial
1. Introduction

- Limitation of Learned Index: **Long Index Build Time**
 - Significantly (up to about $2,000\times$) slower than traditional indexes

Long build time has been identified as a **high priority** for future work in various papers:
RMI (SIGMOD `18), RadixSpline (aiDM `20), PGM-Index (VLDB `20), SOSD (VLDB `20), Critical-RMI (VLDB `22)
1. Introduction

- Primary Reason for Long Index Build Time

\[\text{Index build time} = \text{Per – element overhead} \times \text{Number of elements} \]

1) Higher per-element training overhead
2) Complete traversal and training

- To Mitigate Per-element Overhead
 - Light-weight training model: RadixSpline (aiDM `20), Bourbon (OSDI `20)
 - It still shows longer build time than traditional indexes
This study began with the question 😐 ...

Since the learned index uses the model,

Can’t it learn efficiently even with less data?
1. Introduction

- Our Approach: **Sampling**
 - While sampling may seem simple and even naïve, it is indeed complex

- Challenges
 1. **Absence** of benchmark for sampling applied indexes
 2. **Losing** the error-bound property due to sampling loss
 3. **Complex** trade-offs in terms of model, index, and micro-architecture
2. Background

- **Workload:** Read-only In-memory
 - Practical beginning point of learned index
 - Dataset \((D)\): Sorted array of unique integer keys without duplicates
 - Lookup: Find the position of a lookup key \(k\) in \(D\)
 ① Prediction: Estimate the position of \(k\) as \(p\)
 ② Correction: Find the exact position of \(k\) based on \(p\)
2. Background

- Workload: Read-only In-memory
 - Error-bound property
 - $\forall k \in D, \text{Error}(k) = |\text{Pred}(k) - \text{Pos}(k)| \leq \varepsilon$ (= error-bound)
 - k exists in correction range ($=[p - \varepsilon, p + \varepsilon]$) → binary search

- Important for robustness,
 - Especially where correction is expensive
 - E.g., Disk or remote I/O environments
3. Design

1. Unified Sampling Algorithm & Implementation

 BASIL (Benchmark of Sampling Applied Learned Indexes)

 1) Unified sampling algorithm
 - **Systematic** sampling: extract every I^{th} ($I =$ sampling interval) key from the first key to the last key
 - Pros: Simple, universal, no decision/reordering cost
 - Cons: Not optimal (other methods, e.g., adaptive, should be explored)

 2) Unified sampling implementation
 - All indexes access and train only sample key-value data from the entire dataset
3. Design

2. Sample Learning Algorithm

- EB-PLA (Error-bounded Piece-wise Linear Approximation)
 - Train all keys with error-bound $\varepsilon \rightarrow Error(k) \leq \varepsilon$
 - Train the sample I^{th} keys with error-bound $\varepsilon \Rightarrow Error(k) \leq \varepsilon$

 ➢ Loss of the error-bound property, which is learning objective of the model

(a) Train All ($I = 1$) with $\varepsilon = 3$

(b) Train Sample ($I = 3$) with $\varepsilon = 3$
3. Design

2. Sample Learning Algorithm

- **Sample EB-PLA**
 - **Refine** the error-bound due to sampling loss to $\varepsilon' (= \varepsilon + I - 1) \rightarrow Error(k) \leq \varepsilon'$
 - Preserve the error-bound property, but cannot guarantee the desired error-bound (ε)
 - **Replace** the learning error-bound to $\delta (= \varepsilon - I + 1) \rightarrow Error(k) \leq \varepsilon$
 - Preserve the error-bound (ε) by learning less data with a smaller and stricter error bound

(a) Train All ($I = 1$) with $\varepsilon = 3$
(b) Train Sample ($I = 3$) with $\varepsilon = 3$
(c) Refine the Error-bound ε from 3 to 5
(d) Train Sample ($I = 3$) with $\delta = 1$
3. Design

2. Sample Learning Algorithm

- **Sample EB-Histogram**
 - Train all keys with the error-bound $\varepsilon \rightarrow k \in [p, p + \varepsilon]$
 - Train the sample I^{th} keys with smaller error-bound $\delta (=\varepsilon - I + 1) \rightarrow k \in [p - I + 1, p + \delta]$
 - Preserve correction length ($\varepsilon + 1 = \delta + I$)

![EB-Histogram](image1)

![Sample EB-Histogram](image2)
3. Design

2. Sample Learning Algorithm

- Simple Linear Regression
 - The model itself cannot guarantee the error-bound regardless of sampling
 ➢ To guarantee error bounds, measuring the error of all data causes complete traversal
 - Train sample I^{th} keys → Accuracy can decrease but the error-bound property doesn’t change
3. Design

3. Internal Changes due to Sampling

• Depend on segmentation manner

1) **Dynamic** segmentation (EB-PLA, EB-Histogram)
 - Definition: Dynamically segment key ranges according to the distribution
 - Trade-off: Decrease build time but aggressive sampling can increase # of segments (bins)
3. Design

3. Internal Changes due to Sampling

- Depend on segmentation manner

 2) Fixed segmentation (Simple Linear Regression, EB-Histogram)

 ➢ Definition: Segment key ranges into a fixed number of segments
 ➢ Trade-off: Decrease build time but aggressive sampling can increase # of underfitting segments
4. Evaluation Setup

BASIL (Benchmark of Sampling Applied Learned Indexes)

- Applied sampling to 7 indexes, prefixed with “s”
 - 3 Learned, 2 Histogram, 3 Tree-based indexes

<table>
<thead>
<tr>
<th>Type</th>
<th>Index</th>
<th>Internal Model</th>
<th>Correction Search</th>
</tr>
</thead>
<tbody>
<tr>
<td>Learned</td>
<td>sRMI</td>
<td>Simple Linear Regression</td>
<td>Exponential Search</td>
</tr>
<tr>
<td>Learned</td>
<td>sPGM / sRS</td>
<td>Sample EB-PLA</td>
<td></td>
</tr>
<tr>
<td>Histogram</td>
<td>sCHT</td>
<td>Sample EB-Histogram (Equal-width)</td>
<td>Binary Search</td>
</tr>
<tr>
<td>Histogram</td>
<td>sRT</td>
<td>Sample Histogram (Equal-width)</td>
<td></td>
</tr>
<tr>
<td>Tree-based</td>
<td>sART / sB+-Tree / sIB-Tree</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>
4. Evaluation Setup

BASIL (Benchmark of Sampling Applied Learned Indexes)

- Datasets: 6 representative datasets with 200 million key-value pairs
- Workload: Lookup uniform random 10 million keys from the dataset.
- Environment: Intel(R) Xeon(R) Gold 6338 CPU 2.00 GHz, 48 MB L3 cache with 512 GB of main memory
5. Evaluation

1. Sampling Trade-offs

- **Index**
 - sPGM (Sample EB-PLA)

- **Metrics**
 - **Index**: (a) Build Time, (b) Size, (c) Latency, (f) Pred. latency, (i) Corr. latency
 - **Model**: (d) Height, (g) MSE (Accuracy)
 - **Micro-architecture**: (e) Pred. Cache Miss, (f) Corr. Cache Miss

Dataset: History, Error bound ($\varepsilon \in [2^2, 2^{16}]$), Sampling interval ($I \in [2^0, \varepsilon (\leq 2^{16})]$)
5. Evaluation

1. Sampling Trade-offs

- When sampling interval \((I)\) increases, \textbf{(a) build time decreases} by order of magnitude.

Dataset: History, Error bound \((\varepsilon \in [2^2, 2^{16}])\), Sampling interval \((I \in [2^0, \varepsilon (\leq 2^{16})])\)
5. Evaluation

1. Sampling Trade-offs

- Each error-bound has a threshold interval (I_{TH})
 - mostly $\varepsilon = I^{TH}$

- Until I_{TH},
 (b-i) the rest of metrics remain consistent
5. Evaluation

1. Sampling Trade-offs

- **After** I_{TH},

 # of linear segments \uparrow

 \rightarrow (b) Size \uparrow

 (d) Height \uparrow

 \rightarrow (e) Pred. cache miss \uparrow

 (f) Pred. latency \uparrow

Dataset: History, Error bound ($\epsilon \in [2^2, 2^{16}]$), Sampling interval ($I \in [2^0, \epsilon (\leq 2^{16})]$)
5. Evaluation

1. Sampling Trade-offs

- **After I_{TH}**,

 - # of linear segments \uparrow
 - \rightarrow (g) MSE \downarrow
 - \rightarrow (h) Corr. cache miss \downarrow
 - (i) Corr. latency \downarrow

Dataset: History, Error bound ($\varepsilon \in [2^2, 2^{16}]$), Sampling interval ($I \in [2^0, \varepsilon (\leq 2^{16})]$)
5. Evaluation

- **2. Design Space of Learned Indexes**
 - **Absence** of trade-offs between build time, index size, and lookup latency
 - Incurs significant build times regardless of size and lookup latency

![Graphs showing the design space of learned indexes](a) sRMI (b) sPGM (c) sRS (d) sCHT)
5. Evaluation

- 2. Design Space of Learned Indexes
 - Sampling introduces trade-offs between build-time, size, and lookup latency
 - Broadens design space of learned indexes from 2D to 3D
5. Evaluation

3. Build Speed-up

- Question: How much can sampling reduce build time without significantly degrading index performance?

 Safe down-sampling where size and lookup latency increase by less than 5%
5. Evaluation

- 3. Build Speed-up
 - Question: How much can sampling reduce build time without significantly degrading index performance?
 - **Safe** down-sampling where size and lookup latency increase by less than 5%

<table>
<thead>
<tr>
<th>Index</th>
<th>sRMI</th>
<th>sPGM</th>
<th>sRS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max Speed-up</td>
<td>1/44,514</td>
<td>1/40,781</td>
<td>1/14,479</td>
</tr>
</tbody>
</table>
5. Evaluation

4. Pareto Optimal Analysis

- Question: Can learned indexes be built more efficiently than traditional indexes in terms of build time and lookup latency through sampling?
 - **Pareto optimal** (build-efficient) in terms of build time and average lookup latency
 - no alternative that has both shorter build time and lower average latency
5. Evaluation

4. Pareto Optimal Analysis

- Question: Can learned indexes be built more efficiently than traditional indexes in terms of build time and lookup latency through sampling?
 - Pareto optimal (build-efficient) in terms of build time and tail lookup latency
 - no alternative that has both shorter build time and lower tail latency
6. Conclusion

1. Learned indexes are space-efficient, but long build time make them impractical.

2. Sampling has 3 challenges: 1) losing the error-bound property, 2) absence of benchmark, and 3) complex sampling trade-offs.

3. We propose 1) novel sample learning algorithms that preserve the error-bound, 2) new benchmark, **BASIL**, and 3) an analysis of sampling trade-offs.

4. We show that sampling can 1) expand the design space, 2) reduce build time without significant performance loss, and 3) build learned indexes efficiently.
Thank you