
Can Learned Indexes be Built Efficiently?
A Deep Dive into Sampling Trade-offs

Minguk Choi, Seehwan Yoo, Jongmoo Choi

Dankook University, South Korea

1. Introduction

2

▪ Learned Index

• Index structure employs machine learning techniques

• View the index as a model that predicts the position of a key in a sorted array

(The Case for Learned Index Structures, SIGMOD '18)

1. Introduction

3

▪ Learned Index

• Space-efficient by effectively compressing data distribution through the model

• Pareto optimal in terms of index size and lookup latency in read-only workloads

- No alternative that has both a smaller size and lower latency

Learned

Indexes

Traditional

Indexes

(Benchmarking Learned Indexes, VLDB ‘20)

▪ Limitation of Learned Index: Long Index Build Time

• Significantly (up to about 2,000x) slower than traditional indexes

- Not Pareto optimal (build-efficient) in terms of build time and lookup latency

• Still, there are application (e.g., LSM-Tree) where the index build time is crucial

1. Introduction

4

Learned

Indexes

Traditional

Indexes

1,950x

187x

8.7x

▪ Limitation of Learned Index: Long Index Build Time

• Significantly (up to about 2,000x) slower than traditional indexes

- Not Pareto optimal (build-efficient) for build time and lookup latency

• Still, there are application (e.g., LSM-Tree) where the index build time is crucial

1. Introduction

5

Learned

Indexes

Traditional

Indexes

1,950x

187x

8.7x

Long build time has been identified as

a high priority for future work in various papers:
RMI (SIGMOD `18), RadixSpline (aiDM `20), PGM-Index (VLDB `20), SOSD (VLDB `20), Critical-RMI (VLDB `22)

1. Introduction

6

▪ Primary Reason for Long Index Build Time

1) Higher per-element training overhead

2) Complete traversal and training

▪ To Mitigate Per-element Overhead

• Light-weight training model: RadixSpline (aiDM `20), Bourbon (OSDI `20)

➢ It still shows longer build time than traditional indexes

𝐼𝑛𝑑𝑒𝑥 𝑏𝑢𝑖𝑙𝑑 𝑡𝑖𝑚𝑒 = 𝑃𝑒𝑟 − 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑 × 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠

7

This study began with the question ...

Since the learned index uses the model,

Can’t it learn efficiently even

with less data?

1. Introduction

8

▪ Our Approach: Sampling

• While sampling may seem simple and even naïve, it is indeed

complex

▪ Challenges

1. Absence of benchmark for sampling applied indexes

2. Losing the error-bound property due to sampling loss

3. Complex trade-offs in terms of model, index, and micro-architecture

2. Background

9

▪ Workload: Read-only In-memory

• Practical beginning point of learned index

• Dataset (𝐷): Sorted array of unique integer keys without duplicates

• Lookup: Find the position of a lookup key 𝑘 in 𝐷

Prediction: Estimate the position of 𝑘 as 𝑝

Correction: Find the exact position of 𝑘 based on 𝑝

Index

Structure

• • •

[p − ε, p + ε]

Key k

• • •

2. Background

10

▪ Workload: Read-only In-memory

• Error-bound property

- ∀ 𝑘 ∈ 𝐷, 𝐸𝑟𝑟𝑜𝑟 𝑘 = 𝑃𝑟𝑒𝑑 𝑘 − 𝑃𝑜𝑠 𝑘 ≤ 휀 = 𝑒𝑟𝑟𝑜𝑟 − 𝑏𝑜𝑢𝑛𝑑

- 𝑘 exists in correction range (= 𝑝 − 휀, 𝑝 + 휀) → binary search

• Important for robustness,

- Especially where correction is expensive

- E.g., Disk or remote I/O environments
Index

Structure

• • •

[p − ε, p + ε]

Key k

• • •

11

1. Unified Sampling Algorithm & Implementation

• BASIL (Benchmark of Sampling Applied Learned Indexes)

1) Unified sampling algorithm

- Systematic sampling: extract every 𝐼𝑡ℎ (𝐼 = sampling interval) key from the first key to the last key

➢ Pros: Simple, universal, no decision/reordering cost

➢ Cons: Not optimal (other methods, e.g., adaptive, should be explored)

2) Unified sampling implementation

- All indexes access and train only sample key-value data from the entire dataset

3. Design

3. Design

12

2. Sample Learning Algorithm

• EB-PLA (Error-bounded Piece-wise Linear Approximation)

- Train all keys with error-bound 휀 → 𝐸𝑟𝑟𝑜𝑟 𝑘 ≤ 휀

- Train the sample 𝐼𝑡ℎ keys with error-bound 휀 ↛ 𝐸𝑟𝑟𝑜𝑟 𝑘 ≤ 휀

➢ Loss of the error-bound property, which is learning objective of the model

(b) Train Sample I = 3
with 휀 = 3

(a) Train All I = 1
with 휀 = 3

3. Design

13

2. Sample Learning Algorithm

• Sample EB-PLA

- Refine the error-bound due to sampling loss to 휀′(= 휀 + 𝐼 − 1) → 𝐸𝑟𝑟𝑜𝑟 𝑘 ≤ 휀′

➢ Preserve the error-bound property, but cannot guarantee the desired error-bound (휀)

- Replace the learning error-bound to 𝛿(= 휀 − 𝐼 + 1) → 𝐸𝑟𝑟𝑜𝑟 𝑘 ≤ 휀

➢ Preserve the error-bound (휀) by learning less data with a smaller and stricter error bound

(d) Train Sample I = 3
with 𝛿 = 1

(c) Refine the Error-bound

휀 from 3 to 5

(b) Train Sample I = 3
with 휀 = 3

(a) Train All I = 1
with 휀 = 3

3. Design

14

2. Sample Learning Algorithm

• Sample EB-Histogram

- Train all keys with the error-bound 휀 → 𝑘 ∈ 𝑝, 𝑝 + 휀

- Train the sample 𝐼𝑡ℎ keys with smaller error-bound 𝛿 (=휀−𝐼+1) → 𝑘 ∈ 𝑝 − 𝐼 + 1, 𝑝 + 𝛿

➢ Preserve correction length (휀 + 1 = 𝛿 + 𝐼)

3. Design

15

2. Sample Learning Algorithm

• Simple Linear Regression

- The model itself cannot guarantee the error-bound regardless of sampling

➢ To guarantee error bounds, measuring the error of all data causes complete traversal

- Train sample 𝐼𝑡ℎ keys → Accuracy can decrease but the error-bound property doesn’t change

3. Internal Changes due to Sampling

• Depend on segmentation manner

1) Dynamic segmentation (EB-PLA, EB-Histogram)

➢ Definition: Dynamically segment key ranges according to the distribution

➢ Trade-off: Decrease build time but aggressive sampling can increase # of segments (bins)

3. Design

16

Seg. #1 Seg. #2 Seg. #1 Seg. #2 +Seg. #3

Bin #3.1
Bin #3.2
Bin #3.3
Bin #3.4

Bin #1 Bin #2 Bin #3 Bin #4

+Bin #4.1
+Bin #4.2
+Bin #4.3
+Bin #4.4

Bin #3.1
Bin #3.2
Bin #3.3
Bin #3.4

Bin #1 Bin #2 Bin #3 Bin #4

3. Internal Changes due to Sampling

• Depend on segmentation manner

2) Fixed segmentation (Simple Linear Regression, EB-Histogram)

➢ Definition: Segment key ranges into a fixed number of segments

➢ Trade-off: Decrease build time but aggressive sampling can increase # of underfitting segments

3. Design

17

Constant

Seg #1

Constant

Seg #1

+ Constant

Seg #2

Empty

Bin #1

Empty

Bin #1

+ Empty

Bin #2

+ Empty

Bin #3

+ Empty

Bin #4

4. Evaluation Setup

18

▪ BASIL (Benchmark of Sampling Applied Learned Indexes)

• Applied sampling to 7 indexes, prefixed with “s”

- 3 Learned, 2 Histogram, 3 Tree-based indexes

Type Index Internal Model
Correction

Search

Learned sRMI Simple Linear Regression
Exponential

Search

Learned sPGM / sRS Sample EB-PLA

Binary

Search

Histogram sCHT
Sample EB-Histogram

(Equal-width)

Histogram sRT
Sample Histogram

(Equal-width)

Tree-based sART / sB+-Tree/ sIB-Tree -

4. Evaluation Setup

19

▪ BASIL (Benchmark of Sampling Applied Learned Indexes)

• Datasets: 6 representative datasets with 200 million key-value pairs

• Workload: Lookup uniform random 10 million keys from the dataset.

• Environment: Intel(R) Xeon(R) Gold 6338 CPU 2.00 GHz, 48 MB L3 cache with 512 GB of main memory

5. Evaluation

1. Sampling Trade-offs

▪ Index

• sPGM (Sample EB-PLA)

▪ Metrics

• Index: (a) Build Time, (b) Size,

(c) Latency, (f) Pred. latency,

(i) Corr. latency

• Model: (d) Height, (g) MSE

(Accuracy)

• Micro-architecture: (e) Pred.

Cache Miss, (f) Corr. Cache

Miss

Dataset: History, Error bound (휀 ∈ 22, 216), Sampling interval (I ∈ [20, 휀 (≤ 216)])

5. Evaluation

1. Sampling Trade-offs

▪ When sampling interval (I)

increases, (a) build time

decreases by order of

magnitude

Dataset: History, Error bound (휀 ∈ 22, 216), Sampling interval (I ∈ [20, 휀 (≤ 216)])

5. Evaluation

1. Sampling Trade-offs

▪ Each error-bound has

a threshold interval (𝑰𝑻𝑯)

• mostly 휀 = 𝐼𝑇𝐻

▪ Until 𝑰𝑻𝑯,

(b-i) the rest of metrics

remain consistent

Dataset: History, Error bound (휀 ∈ 22, 216), Sampling interval (I ∈ [20, 휀 (≤ 216)])

5. Evaluation

1. Sampling Trade-offs

▪ After 𝑰𝑻𝑯,

of linear segments ⭡

→ (b) Size ⭡

(d) Height ⭡

→ (e) Pred. cache miss ⭡,

(f) Pred. latency ⭡

Dataset: History, Error bound (휀 ∈ 22, 216), Sampling interval (I ∈ [20, 휀 (≤ 216)])

5. Evaluation

1. Sampling Trade-offs

▪ After 𝑰𝑻𝑯,

of linear segments ⭡

→ (g) MSE ⭣

→ (h) Corr. cache miss ⭣

(i) Corr. latency ⭣

Dataset: History, Error bound (휀 ∈ 22, 216), Sampling interval (I ∈ [20, 휀 (≤ 216)])

5. Evaluation

25

▪ 2. Design Space of Learned Indexes

• Absence of trade-offs between build time, index size, and lookup latency

- Incurs significant build times regardless of size and lookup latency

5. Evaluation

26

▪ 2. Design Space of Learned Indexes

• Sampling introduces trade-offs between build-time, size, and lookup latency

- Broadens design space of learned indexes from 2D to 3D

5. Evaluation

27

▪ 3. Build Speed-up

• Question: How much can sampling reduce build time without significantly

degrading index performance?

➢ Safe down-sampling where size and lookup latency increase by less than 5%

5. Evaluation

28

▪ 3. Build Speed-up

• Question: How much can sampling reduce build time without significantly

degrading index performance?

➢ Safe down-sampling where size and lookup latency increase by less than 5%

Index sRMI sPGM sRS

Max Speed-up 1/44,514 1/40,781 1/14,479

5. Evaluation

29

▪ 4. Pareto Optimal Analysis

• Question: Can learned indexes be built more efficiently than traditional indexes

in terms of build time and lookup latency through sampling?

- Pareto optimal (build-efficient) in terms of build time and average lookup latency

➢ no alternative that has both shorter build time and lower average latency

Learned

Indexes

Traditional

Indexes

5. Evaluation

30

▪ 4. Pareto Optimal Analysis

• Question: Can learned indexes be built more efficiently than traditional indexes

in terms of build time and lookup latency through sampling?

- Pareto optimal (build-efficient) in terms of build time and tail lookup latency

➢ no alternative that has both shorter build time and lower tail latency

Learned

Indexes

Traditional

Indexes

1. Learned indexes are space-efficient, but long build time make them

impractical.

2. Sampling has 3 challenges: 1) losing the error-bound property, 2) absence of

benchmark, and 3) complex sampling trade-offs.

3. We propose 1) novel sample learning algorithms that preserve the error-

bound, 2) new benchmark, BASIL, and 3) an analysis of sampling trade-

offs.

4. We show that sampling can 1) expand the design space, 2) reduce build

time without significant performance loss, and 3) build learned indexes

efficiently.

6. Conclusion

31

Thank you

	슬라이드 1
	슬라이드 2: 1. Introduction
	슬라이드 3: 1. Introduction
	슬라이드 4: 1. Introduction
	슬라이드 5: 1. Introduction
	슬라이드 6: 1. Introduction
	슬라이드 7
	슬라이드 8: 1. Introduction
	슬라이드 9: 2. Background
	슬라이드 10: 2. Background
	슬라이드 11: 3. Design
	슬라이드 12: 3. Design
	슬라이드 13: 3. Design
	슬라이드 14: 3. Design
	슬라이드 15: 3. Design
	슬라이드 16: 3. Design
	슬라이드 17: 3. Design
	슬라이드 18: 4. Evaluation Setup
	슬라이드 19: 4. Evaluation Setup
	슬라이드 20: 5. Evaluation
	슬라이드 21: 5. Evaluation
	슬라이드 22: 5. Evaluation
	슬라이드 23: 5. Evaluation
	슬라이드 24: 5. Evaluation
	슬라이드 25: 5. Evaluation
	슬라이드 26: 5. Evaluation
	슬라이드 27: 5. Evaluation
	슬라이드 28: 5. Evaluation
	슬라이드 29: 5. Evaluation
	슬라이드 30: 5. Evaluation
	슬라이드 31: 6. Conclusion
	슬라이드 32: Thank you

