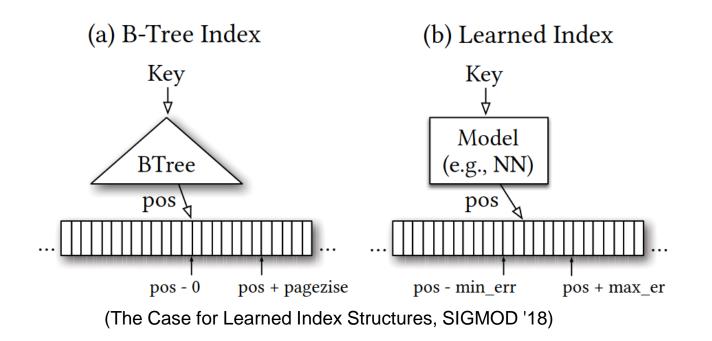
Can Learned Indexes be Built Efficiently? A Deep Dive into Sampling Trade-offs

Minguk Choi, Seehwan Yoo, Jongmoo Choi Dankook University, South Korea

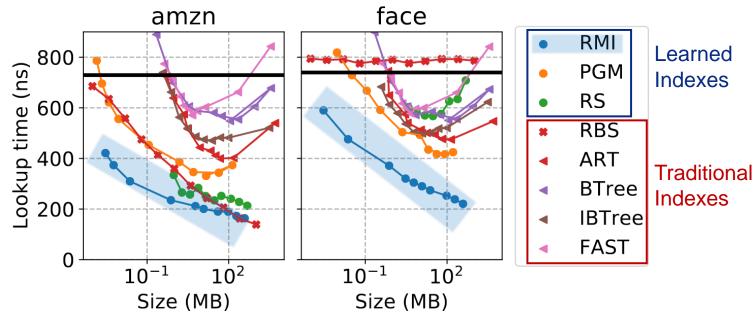
1. Introduction

- Learned Index
 - Index structure employs machine learning techniques
 - View the index as a model that predicts the position of a key in a sorted array



1. Introduction

- Learned Index
 - Space-efficient by effectively compressing data distribution through the model
 - Pareto optimal in terms of index size and lookup latency in read-only workloads
 - No alternative that has both a smaller size and lower latency

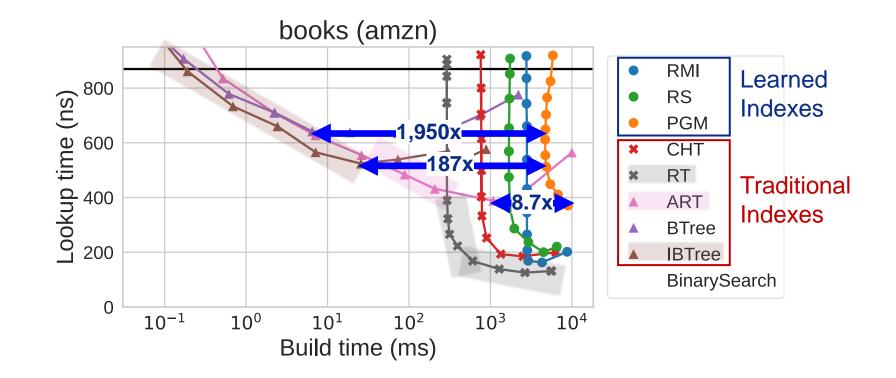


(Benchmarking Learned Indexes, VLDB '20)

4

1. Introduction

- Limitation of Learned Index: Long Index Build Time
 - Significantly (up to about 2,000x) slower than traditional indexes
 - Not Pareto optimal (build-efficient) in terms of build time and lookup latency
 - Still, there are application (e.g., LSM-Tree) where the index build time is crucial

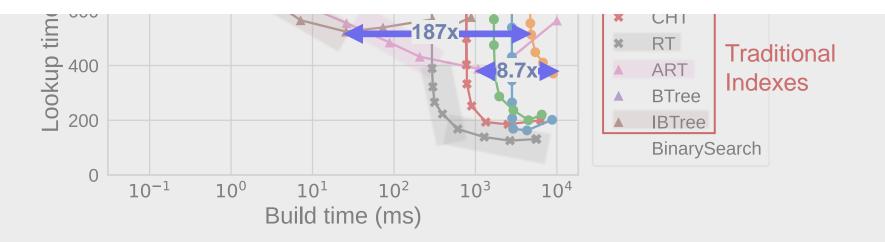


Meta

1. Introduction

- Limitation of Learned Index: Long Index Build Time
 - Significantly (up to about 2,000x) slower than traditional indexes

Long build time has been identified as a high priority for future work in various papers: RMI (SIGMOD `18), RadixSpline (aiDM `20), PGM-Index (VLDB `20), SOSD (VLDB `20), Critical-RMI (VLDB `22)



Meta

RocksDB

1. Introduction

Primary Reason for Long Index Build Time

Index build time = Per - element overhead × Number of elements

- 1) Higher per-element training overhead
- 2) Complete traversal and training

- To Mitigate Per-element Overhead
 - Light-weight training model: RadixSpline (aiDM `20), Bourbon (OSDI `20)
 - It still shows longer build time than traditional indexes

This study began with the question 🤪...

Since the learned index uses the model,

Can't it learn efficiently even with less data?

1. Introduction

- Our Approach: Sampling
 - While sampling may seem simple and even naïve, it is indeed complex
- Challenges
 - 1. Absence of benchmark for sampling applied indexes
 - 2. Losing the error-bound property due to sampling loss
 - 3. Complex trade-offs in terms of model, index, and micro-architecture

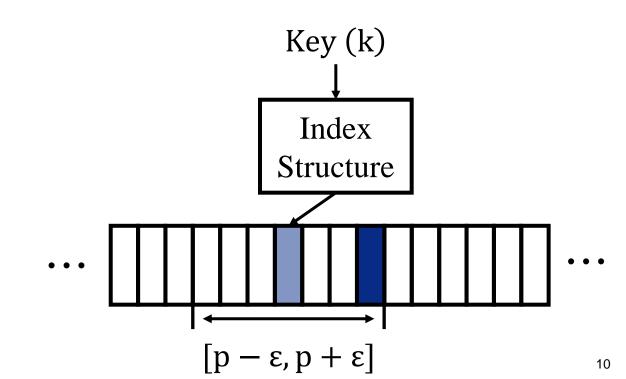
2. Background

- Workload: Read-only In-memory
 - Practical beginning point of learned index
 - Dataset (D): Sorted array of unique integer keys without duplicates
 - Lookup: Find the position of a lookup key k in D
 - ① Prediction: Estimate the position of k as p
 - (2) Correction: Find the exact position of k based on p

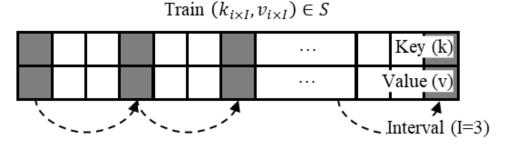


2. Background

- Workload: Read-only In-memory
 - Error-bound property
 - $\forall k \in D, Error(k) = |Pred(k) Pos(k)| \le \varepsilon (= error bound)$
 - k exists in correction range (= $[p \varepsilon, p + \varepsilon]$) \rightarrow binary search
 - Important for robustness,
 - Especially where correction is expensive
 - E.g., Disk or remote I/O environments



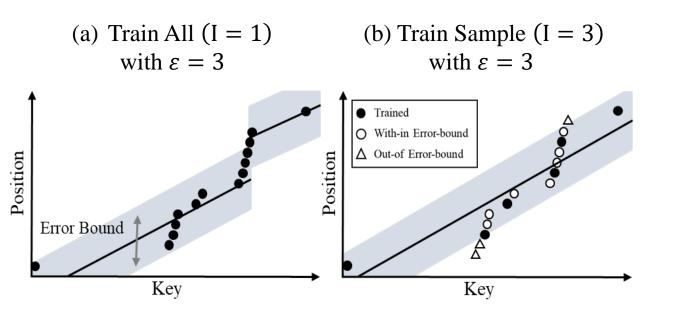
- 1. Unified Sampling Algorithm & Implementation
 - **BASIL** (Benchmark of Sampling Applied Learned Indexes)
 - 1) Unified sampling algorithm
 - Systematic sampling: extract every I^{th} (I = sampling interval) key from the first key to the last key
 - Pros: Simple, universal, no decision/reordering cost
 - Cons: Not optimal (other methods, e.g., adaptive, should be explored)
 - 2) Unified sampling implementation
 - All indexes access and train only sample key-value data from the entire dataset



BASIL. Access I-th sample key-value in original dataset

- 2. Sample Learning Algorithm
 - EB-PLA (Error-bounded Piece-wise Linear Approximation)
 - Train all keys with error-bound $\varepsilon \rightarrow Error(k) \leq \varepsilon$
 - Train the sample I^{th} keys with error-bound $\varepsilon \nleftrightarrow Error(k) \leq \varepsilon$

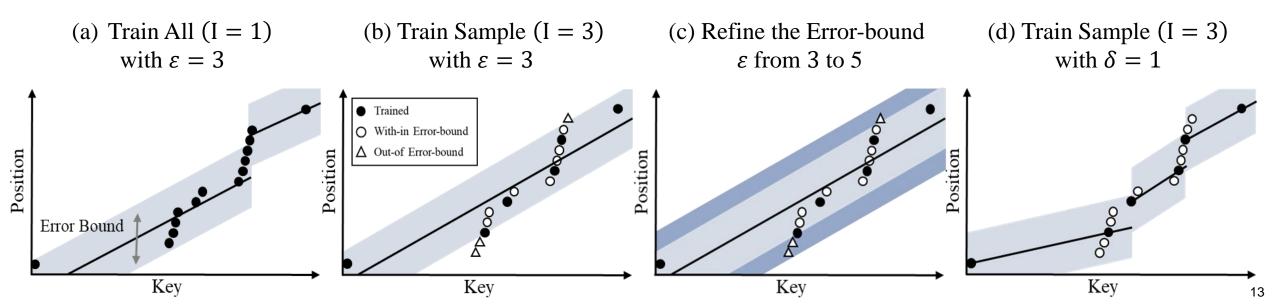
Loss of the error-bound property, which is learning objective of the model



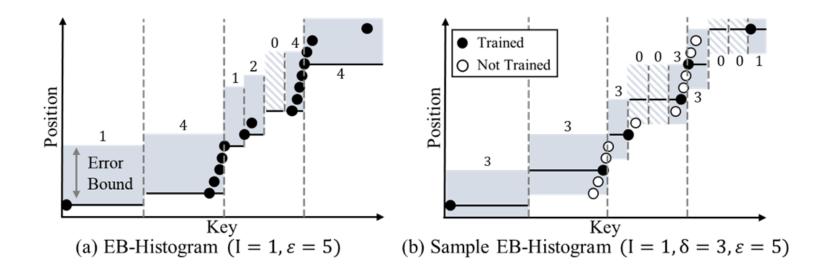
- 2. Sample Learning Algorithm
 - Sample EB-PLA
 - Refine the error-bound due to sampling loss to $\varepsilon' (= \varepsilon + I 1) \rightarrow Error(k) \le \varepsilon'$

> Preserve the error-bound property, but cannot guarantee the desired error-bound (ε)

- Replace the learning error-bound to $\delta(=\varepsilon I + 1) \rightarrow Error(k) \le \varepsilon$
 - > Preserve the error-bound (ε) by learning less data with a smaller and stricter error bound



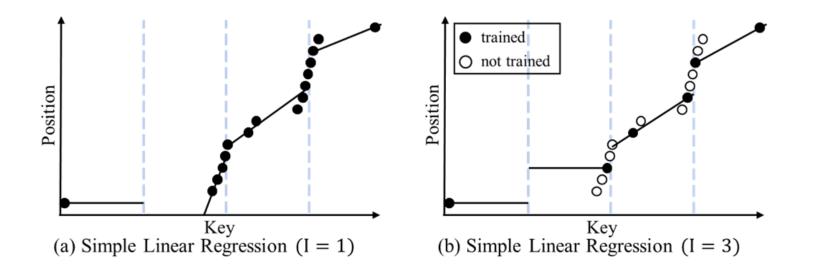
- 2. Sample Learning Algorithm
 - Sample EB-Histogram
 - Train all keys with the error-bound $\varepsilon \rightarrow k \in [p, p + \varepsilon]$
 - Train the sample I^{th} keys with smaller error-bound $\delta (=\varepsilon I + 1) \rightarrow k \in [p I + 1, p + \delta]$
 - ▶ Preserve correction length ($\varepsilon + 1 = \delta + I$)



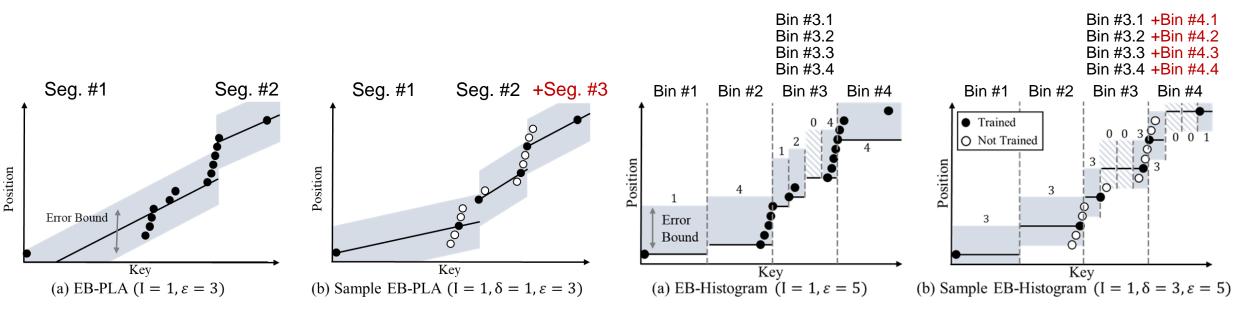
- 2. Sample Learning Algorithm
 - Simple Linear Regression
 - The model itself cannot guarantee the error-bound regardless of sampling

> To guarantee error bounds, measuring the error of all data causes complete traversal

- Train sample I^{th} keys \rightarrow Accuracy can decrease but the error-bound property doesn't change



- 3. Internal Changes due to Sampling
 - Depend on segmentation manner
 - 1) Dynamic segmentation (EB-PLA, EB-Histogram)
 - Definition: Dynamically segment key ranges according to the distribution
 - Trade-off: Decrease build time but aggressive sampling can increase # of segments (bins)



- 3. Internal Changes due to Sampling
 - Depend on segmentation manner
 - 2) Fixed segmentation (Simple Linear Regression, EB-Histogram)
 - > Definition: Segment key ranges into a fixed number of segments
 - Trade-off: Decrease build time but aggressive sampling can increase # of underfitting segments



4. Evaluation Setup

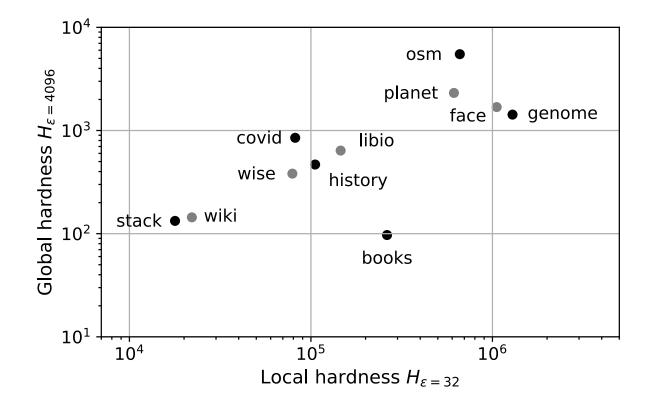
BASIL (Benchmark of Sampling Applied Learned Indexes)

- Applied sampling to 7 indexes, prefixed with "s"
 - 3 Learned, 2 Histogram, 3 Tree-based indexes

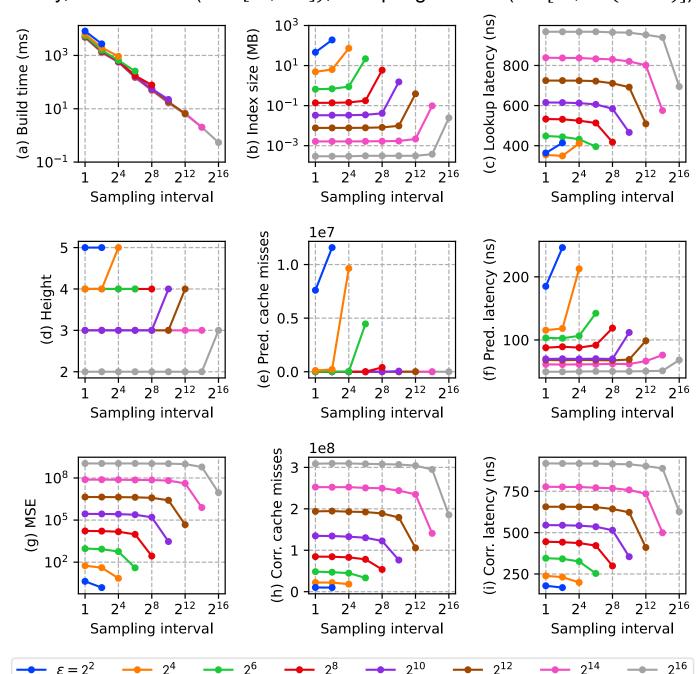
Туре	Index	Internal Model	Correction Search
Learned	sRMI	Simple Linear Regression	Exponential Search
Learned	sPGM / sRS	Sample EB-PLA	
Histogram	sCHT	Sample EB-Histogram (Equal-width)	Binary Search
Histogram	sRT	Sample Histogram (Equal-width)	
Tree-based	sART / sB+-Tree/ sIB-Tree	-	

4. Evaluation Setup

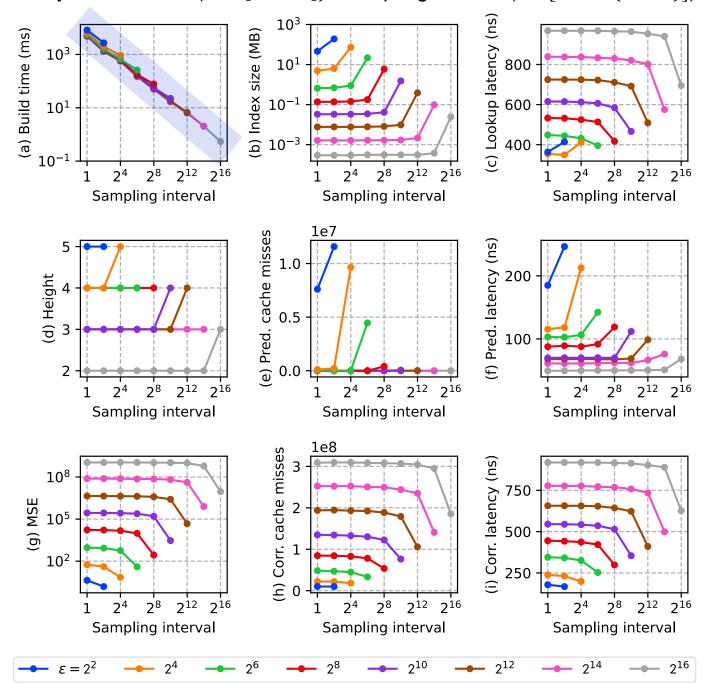
- Datasets: 6 representative datasets with 200 million key-value pairs
- Workload: Lookup uniform random 10 million keys from the dataset.
- Environment: Intel(R) Xeon(R) Gold 6338 CPU 2.00 GHz, 48 MB L3 cache with 512 GB of main memory



- 1. Sampling Trade-offs
- Index
 - sPGM (Sample EB-PLA)
- Metrics
 - Index: (a) Build Time, (b) Size,
 (c) Latency, (f) Pred. latency,
 (i) Corr. latency
 - Model: (d) Height, (g) MSE (Accuracy)
 - Micro-architecture: (e) Pred.
 Cache Miss, (f) Corr. Cache
 Miss



- 1. Sampling Trade-offs
- When sampling interval (I) increases, (a) build time decreases by order of magnitude



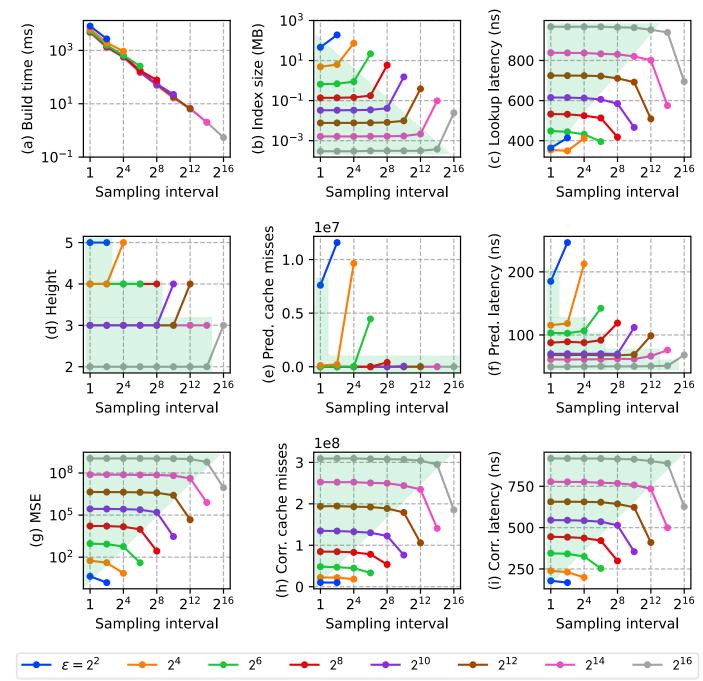
5. Evaluation

- 1. Sampling Trade-offs
- Each error-bound has

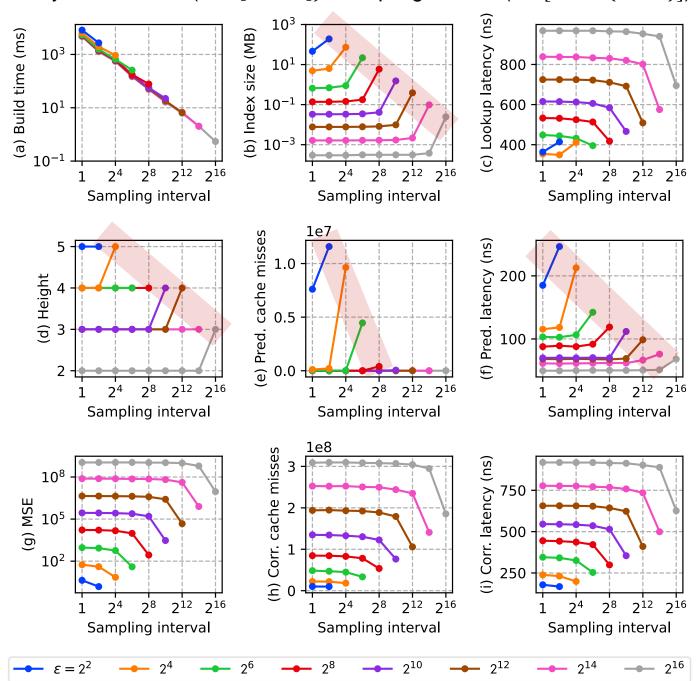
a threshold interval (I_{TH})

• mostly $\varepsilon = I^{TH}$

Until I_{TH}, (b-i) the rest of metrics remain consistent



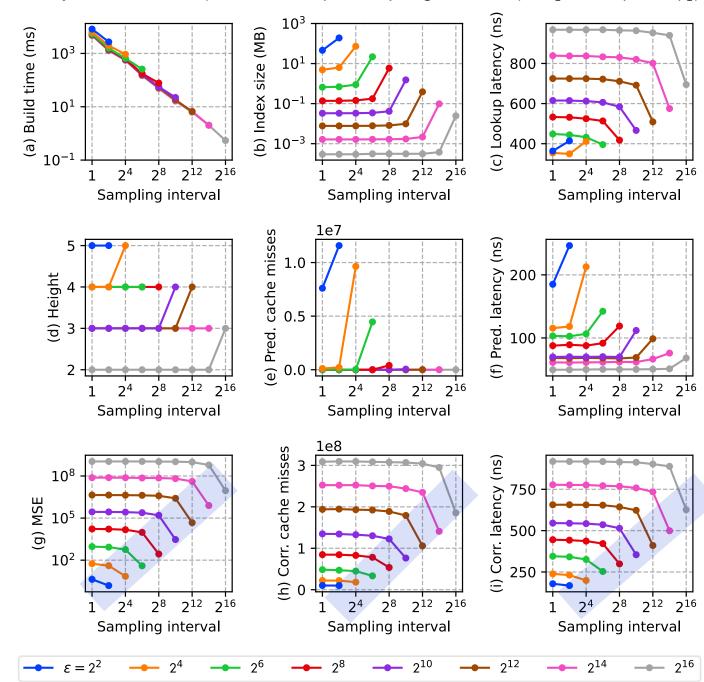
- 1. Sampling Trade-offs
- After I_{TH} ,
 - # of linear segments 1
 - \rightarrow (b) Size 1
 - (d) Height 1
 - \rightarrow (e) Pred. cache miss **1**,
 - (f) Pred. latency 1



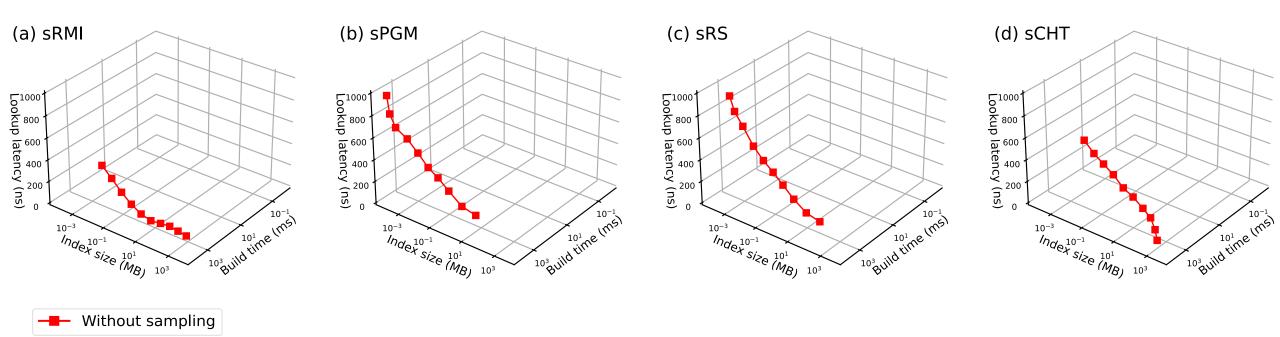
5. Evaluation

- 1. Sampling Trade-offs
- After I_{TH} ,
 - # of linear segments 1
 - \rightarrow (g) MSE \downarrow
 - \rightarrow (h) Corr. cache miss \downarrow

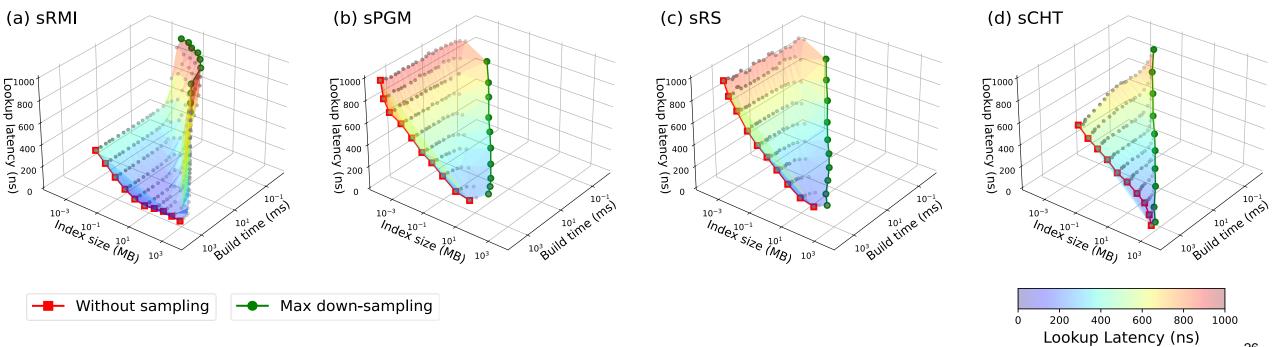
(i) Corr. latency ↓



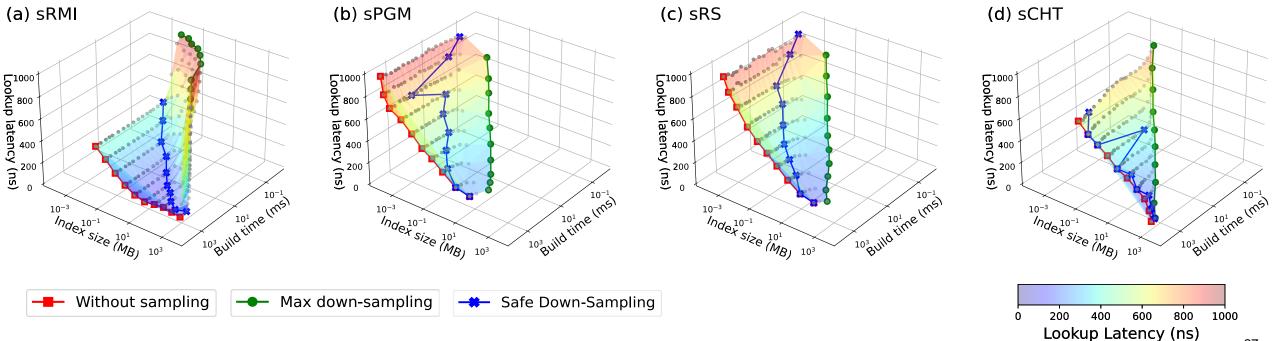
- 2. Design Space of Learned Indexes
 - Absence of trade-offs between build time, index size, and lookup latency
 - Incurs significant build times regardless of size and lookup latency



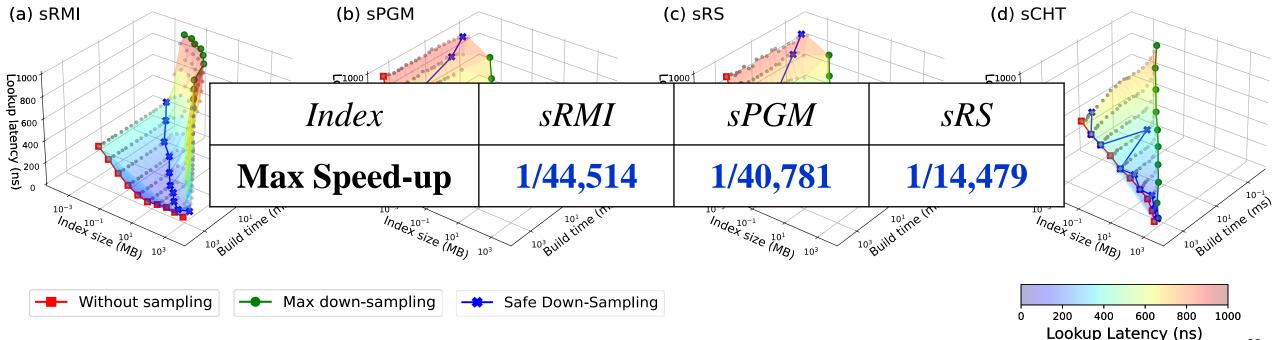
- 2. Design Space of Learned Indexes
 - Sampling introduces trade-offs between build-time, size, and lookup latency
 - Broadens design space of learned indexes from 2D to 3D



- 3. Build Speed-up
 - Question: How much can sampling reduce build time without significantly degrading index performance?
 - Safe down-sampling where size and lookup latency increase by less than 5%

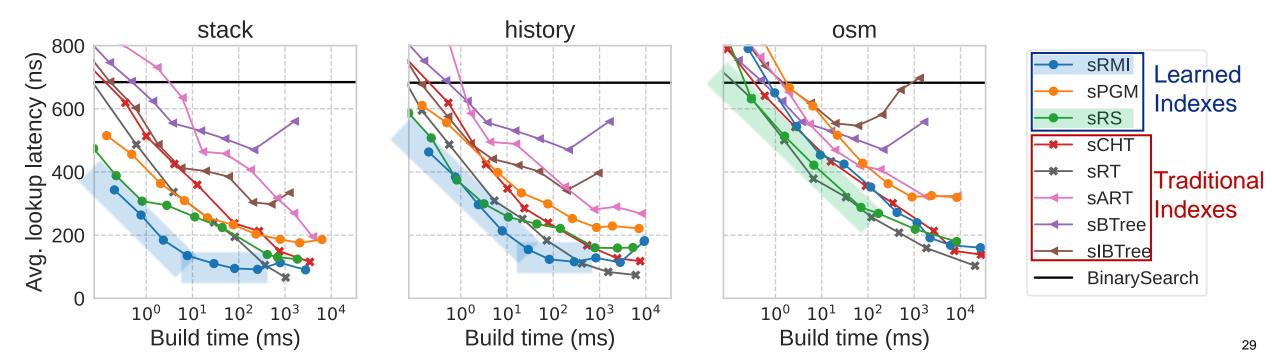


- 3. Build Speed-up
 - Question: How much can sampling reduce build time without significantly degrading index performance?
 - Safe down-sampling where size and lookup latency increase by less than 5%



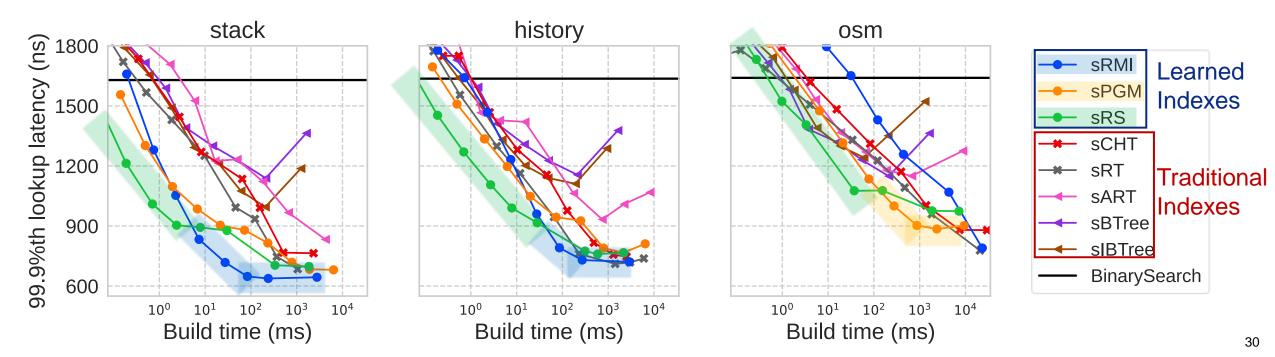
- 4. Pareto Optimal Analysis
 - Question: Can learned indexes be built more efficiently than traditional indexes in terms of build time and lookup latency through sampling?
 - Pareto optimal (build-efficient) in terms of build time and average lookup latency

> no alternative that has both shorter build time and lower average latency



- 4. Pareto Optimal Analysis
 - Question: Can learned indexes be built more efficiently than traditional indexes in terms of build time and lookup latency through sampling?
 - Pareto optimal (build-efficient) in terms of build time and tail lookup latency

> no alternative that has both shorter build time and lower tail latency



6. Conclusion

- 1. Learned indexes are space-efficient, but long build time make them impractical.
- 2. Sampling has 3 challenges: 1) losing the error-bound property, 2) absence of benchmark, and 3) complex sampling trade-offs.
- 3. We propose 1) novel sample learning algorithms that preserve the errorbound, 2) new benchmark, *A* BASIL, and 3) an analysis of sampling tradeoffs.
- 4. We show that sampling can 1) expand the design space, 2) reduce build time without significant performance loss, and 3) build learned indexes efficiently.

Thank you